Current Issue : July-September Volume : 2025 Issue Number : 3 Articles : 5 Articles
Turbodrills are extensively utilized within the oilfield development industry. In order to enhance the performance output of turbodrills, a novel stator and rotor structure has been conceptualized. Fluent 19.0 numerical simulation software was employed to ascertain the output characteristics of the rotor within the flow field. The drilling engine output performance was the subject of a qualitative study, which was conducted using the drilling mud pump test equipment during drilling. Furthermore, a speed torque meter measurement system was designed to quantitatively analyze the output torque and speed performance of the prototype. The results show that: 1 Through the numerical simulation method, it is verified that the new structural rotor has the output performance of a conventional rotor. 2 Comparing the numerical solution and the test value, it can be seen that the relative error value is within 4.3%, indicating that the numerical simulation has a certain accuracy. 3 When the inlet displacement is 30 L/s and the speed is 1400 r/min, the maximum value of the numerical solution of the output torque of a single rotor group is 12.45 N/m. When the inlet displacement increases from 18 L/s to 30 L/s, the maximum torque numerical solution increases from 10.78 N/m to 27.44 N/m....
Servo motors are among the most efficient and precise performers within the category of permanent magnet synchronous motors. These motors stand out for their high power density, quiet operation, low maintenance, and wide operating speed range advantages. One of the disadvantages of these motors, which is also the subject of this study, is their high torque ripple. Torque ripple is critical in applications requiring precision, as it can affect operational performance and contribute to vibration and noise issues. Torque ripple can be reduced through design methods such as different winding layouts, slot openings, stator/rotor skewing, or pole offset. In this study, torque ripple of servo motors was investigated through various magnet geometry designs and analyses using the finite element method. Design and analysis studies were conducted for a reference servo motor, and alternative designs were obtained by modifying the rotor structure of the reference motor. In the studies conducted, it has been observed that the torque ripple, initially at 2.17 Nm, can be improved to as low as 1.23 Nm. This indicates that the torque ripple, which was initially at 3.75%, can be reduced to around 2.08%. However, performance losses may occur depending on the extent of improvement....
Traction motors in electric transport are most often synchronous permanent magnet motors (PMSMs). Induction motors (IMs) have large dimensions and stator current amplitudes under comparable loads. Traditional IM control methods do not solve these problems. Recent studies have shown that by changing the main magnetic flux in the IM in accordance with the load, these characteristics of the asynchronous electric drive can be significantly improved. Standard frequency converters do not allow for the implementation of these algorithms. But it makes sense to conduct a potential assessment of the capabilities of this algorithm to reduce the total stator currents of traction IMs. This article analyzes the results of real tests of a special vehicle for transporting rock inside mines, conducted several years ago at a mining equipment plant and in several mines in Russia. The prototype of the special transport vehicle has a load capacity of 15 tons, and its traction electric drive is based on four motor wheels with a total power of 100 kW and a frequency converter from the company “Vacon” (Vaasa, Finland). The tests were conducted at the plant’s testing ground and in real mine conditions. These tests allowed us to obtain information about the operation of the asynchronous electric drive under dynamically changing loads in a wide range, which is very difficult to obtain on laboratory benches or in industrial enterprise conditions. The experiments confirmed the efficiency of the optimization algorithm for asynchronous electric drives with frequency control. At the same time, the weight, size, and electrical parameters of the drive are as close as possible to those of direct current drives....
Variable speed drives are often controlled by a double-loop scheme in which a proportional integral controller takes on the speed loop. The tuning of this loop is a complex job. In most cases just mechanical variables are considered for tuning. This paper presents a new Pareto analysis incorporating mechanical and electrical variables. A state of the art finite state model predictive controller is used for stator current control. The analysis is performed using experimental data from a five-phase induction motor and considers considering commonly found performance indicators derived from experimental data. The results show undocumented connections between those performance indicators. The analysis not only helps in PI tuning but, more importantly, prompts for a revision of the methods usually utilized to report performance enhancements of new methods....
The rapid advancement of technology has increased our reliance on axial flux permanent magnet machines (AFPMMs), making Printed Circuit Boards (PCBs) essential for modern, lightweight designs. This study reviews PCB roles in AFPMMs for low- and high-power applications by examining research from 2019 to 2024. Using the PRISMA methodology, 38 articles from IEEE Xplore and Web of Science were analyzed. This review focuses on advancements in PCB manufacturing, defect mitigation, winding topologies, software tools, and optimization methods. A structured Boolean search strategy (“Printed Circuit Board” OR “PCB” AND “axial flux permanent magnet machine” OR “AFPM”) guided the literature retrieval process. Articles were meticulously screened using the Rayyan software for titles, abstracts, and content, with duplicate removal performed via the Mendeley software V2.120.0. Findings show significant progress in lightweight AFPMMs with PCBs, improving power quality and performance. Research activity over the 6 years showed inconsistent growth, with concentrated trapezoidal winding emerging as the dominant configuration, followed by distributed winding designs. These configurations were particularly applied in single stator double rotor (SSDR) coreless AFPM machines, characterized by minimal defects, minimal losses, and optimized single-layer winding designs utilizing tools such as ANSYS and COMSOL. Growing interest in double stator single rotor (DSSR) and multi-disk configurations highlights opportunities for innovative designs and advanced optimization techniques....
Loading....